
Computer tools in education, 2019

№ 2: 72–86

http://cte.eltech.ru

doi:10.32603/2071-2340-2019-2-72-86

POSSIBLE IMPROVEMENTS

OF MODERN DYNAMIC GEOMETRY SOFTWARE

Djordje Herceg
1
, PhD, full professor, herceg@dmi.uns.ac.rs

Davorka Radakovíc
1
, MSc., teaching associate, davorkar@dmi.uns.ac.rs

Mirjana Ivanovíc
1
, PhD, full professor, mira@dmi.uns.ac.rs

Dejana Herceg
1
, assistant professor, vuletic@uns.ac.rs

1
University of Novi Sad, Trg D. Obradovíca 6, 21000, Novi Sad, Serbia

Abstract

Contemporary education is starting to supersede the traditional one (teacher-to-student

lessons) with technology-rich learning using various educational tools and a selection of

materials that are effective, efficient and appealing to students. Dynamic Geometry Soft-

ware (DGS) today is widely used in teaching and learning mathematical topics. Such kind

of educational software can evolve in several ways, by either adding new features on the

surface or by evolving the evaluation engine at its core. The implementation of a DGS

needs to be straightforward and modular.

To achieve the evolution of a DGS core we have developed a programming framework

for the Dynamic Geometry Software, SLGeometry, with a genericized functional language

and the corresponding expression evaluation engine. Engine acts as a framework into

which specific semantics is embedded in the form of code, annotated with metadata.

An ordinary expression tree evaluator is transformed into an object-oriented one by this

framework. Whilst other DGS are based on purely functional expression evaluators, our

solution has the advantages of being more general, maintainable, understandable, easy

to implement, and providing a natural way of specifying object properties in the user

interface, minimizing typing and syntax errors. The modular approach enables indepen-

dent development of subject-specific components, which are easily added to the evalua-

tion engine in the form of plug-ins. The object-oriented nature of the framework enables

development of self-contained units, such as objects and visual elements which encap-

sulate domain-specific semantic and present it to the user as virtual placeholders for

real-life objects and notions.

In this paper we present several possible improvements of Dynamic Geometry Software,

particularly having in mind the platform that we have implemented. Additionally we dis-

cuss benefits of these features and their influence on the users/students. The approach

is tested on SLGeometry— our DGS platform, developed in C# on the .NET Framework.

Keywords: Dynamic Geometry Software, Teaching, Component development.

Citation: D. Herceg, D. Radakovíc, M. Ivanovíc, and D. Herceg, "Possible Improvements

of Modern Dynamic Geometry Software,” Computer tools in education, no. 2, pp. 72–86,

2019; doi: 10.32603/2071-2340-2019-2-72-86

72 © COMPUTER TOOLS IN EDUCATION.№2, 2019

http://cte.eltech.ru
http://dx.doi.org/10.32603/2071-2340-2019-2-72-86
mailto:herceg@dmi.uns.ac.rs
mailto:davorkar@dmi.uns.ac.rs
mailto:mira@dmi.uns.ac.rs
mailto:vuletic@uns.ac.rs

Possible Improvements of Modern Dynamic Geometry Software

1. INTRODUCTION

Computers have been used for geometric visualization since the early days of establishing

computer graphics as one of important areas in ICT. A distinct class of educational graphical soft-

ware has appeared, i.e. the Dynamic Geometry Software (DGS). In DGS, a geometric drawing is

represented by a set of expressions which represent geometric objects on a graphic display. The

expressions, assigned to named variables, can be parametrized and referenced by each other.

This way, relationships between objects in a drawing are established. It is important when the

user moves an object, all dependent objects have to be recalculated and moved. There are nu-

merous DGS frameworks but among the most popular today are GeoGebra [1], Cabri [2], Cin-

derella [3] and The Geometer's Sketchpad [4].

The authors have been using GeoGebra and Mathematica [5] in everyday practice for the

teaching of geometry, numerical analysis and geography for more than 15 years. From our ex-

perience, as well as from the students’ feedback, we have identified several aspects of modern

DGS which could be improved, and tested them on SLGeometry [6–9], an experimental platform

for dynamic geometry, which we developed to test various concepts and approaches. This paper

presents our ideas and observations for possible improvements of our platform.

The paper is organized as follows: Section 2 provides an overview of related work. In Section

3 we introduce the extensibility in DGS. Section 4 introduces the full object model into the DGS

programming language. The use of the map components in SLGeometry is demonstrated in Sec-

tion 5. Section 6 presents the just in time (JIT) partial compilation of expressions in SLGeometry,

whilst next section presents connecting Arduino-based microcomputers to SLGeometry. Section

7 concludes the paper.

2. RELATED WORK

Since the late 1960s somemathematics educators positively assesed the role of mathematical

software tools, models and modeling in the teaching and learning of mathematics [10]. In that

time the availability of computers has changed the nature of process of problem solving inmath-

ematics. Also it started to have significant influence on changes in mathematics curriculum at

all levels of education. Furthermore, many conferences held panels giving recommendations to

explore and summarize current thinking about the role of the computer for the curricula in the

four fields of science: mathematics, physics, statistics and chemistry [11].

The application of computers and different kinds of educational software is a topic of con-

stant interest for scientists and different educational stakeholders who significantly influence

creation and dissemination of school curricula, especially in science and mathematics. Many

talks and papers are presented at conferences, providing overview of the current state of the art

in technology enhanced learning, including both practice-oriented experiences and research-

based evidence.

In early 1990s Blum and Niss [12] reviewed applied problem solving, modeling and appli-

cations in mathematics education, extended with use of computers, and its relations to other

subjects. In contemporary mathematical modeling, the process of translating between the real

world situations andmathematics in both directions is one of the essential topics inmathematics

education [13].

Kauffmann [14] observes that using computer-aided design software in high school and uni-

versity education contributes to better and faster comprehension of geometric problems than

using traditional teaching methods. Drijvers et al. [15] emphasize that new demands occur in

COMPUTER IN EDUCATION 73

Djordje Herceg , Davorka Radakovíc, Mirjana Ivanovíc, Dejana Herceg

educational systems in order to prepare students for future professions where technology of-

fers enormous opportunities for teaching and learning. Exploiting these opportunities requires

rethinking educational paradigms and strategies.

STEM (science, technology, engineering, andmathematics) education is also concentrated on

developing tools and processes for teaching, which integrate concepts that are usually taught as

separate subjects in different classes and emphasizes the application of knowledge to real-life

situations, enabling teachers to teach mathematics and science much better and more effec-

tively [16, 17]. Providing early exposure to STEM content can ensure that students will continue

their interest in STEM subjects through middle and high school up to university level [18]. Now-

days seems that a new goal of education is to move from STEM to STE-A-M, i.e. to include arts,

design and creation, as one of the successful models of coexistence between art and science

education [19].

Sometimes the teachers are willing to learn new tools for teaching geometry, but they are

not also ready to implement these tools in their everyday teaching practice in schools. This ap-

pears in particularly in developing countries, mostly in the rural areas where different neces-

sary resources (including computers) for integration of technology in school education are very

limited [20–23].

Similar problem appears in Serbia as well, where adequate teaching materials and applica-

tions in Serbian language that teachers can use and display to the students are lacking. Further,

in last decade, teachers are obliged to have adequate skills and knowledge to use computers,

and there are curricula instructions compatibility improvement with modern trends also. How-

ever, the optimistic fact is that the number of teachers who successfully implement information

and communication technologies (ICT) in their classroom environment is steadily increasing

[24–26].

The importance of use of technology in mathematical education and research is accepted

predominantly at a rhetorical level. Since the computers are everywhere, school mathematics

has not changed to reflect this situation, i.e. the school curriculum still needs to be innovated

and improved. The use of well known DGS in faculty courses makes the students to play a much

more active role than in the traditional learning [27]. Later they will probably continue to use

such technological advancement in primary and secondary schools and attract and motivate

pupils for different mathematical subjects.

According to Sarama and Clements geometry is the most relevant mathematical subject

which lies at the heart of physics, chemistry, biology, geology and geography, art, civil engineer-

ing and architecture [28]. Using Logo environment they showed that computer manipulations

can help students build on their physical experiences, tying them tightly to symbolic represen-

tations. Also computer manipulations can encourage students to make their knowledge explicit,

which helps them build integrated-concrete knowledge [29].

Research and practice in education have to enhance each other through the development

of a new set of tools for understanding and supporting powerful mathematics classroom in-

struction as well as instruction across a wide range of disciplines [30].

The use of mathematical software, starting with Computer Algebra Systems (CAS) on HP cal-

culators, (some of first Hewlett-Packard scientific calculators), and continuing with, e.g. Math-

ematica and Maple, has made significant influence in teaching of mathematics. Some of re-

searchers use CAS and DGS for the mathematical modeling of a real-life problems as a problem-

solving activity that suits the purposes of mathematical learning. This contributes to the under-

standing of known mathematical concepts to the learning of new mathematical concepts and

establishing interdisciplinary relationships [31, 32].

74 © COMPUTER TOOLS IN EDUCATION.№2, 2019

Possible Improvements of Modern Dynamic Geometry Software

Along with the development of automatic theorem provers occurred a need for develop-

ing accompanying graphic interfaces which allow interactive manipulation by mouse dragging

and manipulation of mathematical expressions in symbolic form. Commercial products such

as Cabri [2, 33], Cinderella [3] and Geometer’s Sketchpad [4, 34], cover high and middle school

mathematics and physics education through algebra, analysis, geometry, trigonometry, mechan-

ics and optics, as well asmany other subjects. Books, tutorials and forums containmany teaching

materials with presented and solved problems.

Recently, besides the well-known commercial DGS new free and open sources dynamic ge-

ometry systems, some of them having functionality of computer algebra systems, have also

emerged. For example GeoGebra [1, 35] is a free DGS, created by Markus Hohenwarter in 2001,

maintained by an international team of developers, which contribute to a more comprehensive

set of features integrating geometry, algebra, calculus, statistics, graphing, spreadsheets and 3D

augmented reality. A large self-sustained community of users helps students and teachers with

numerous examples of teachingmaterials and offers help through online forums. It had become

the leading provider of DGS worldwide as software for teaching and learning: available in many

languages, organizing International GeoGebra institutes (IGI) which focus on training andmain-

tain on-line support system for teachers, develop and share workshop resources and classroom

materials, conduct and implement research projects in teaching and learning mathematics and

other STEM subjects.

The aforementioned DGS use the functional approach for specifying dynamic drawings. Our

extensible framework leverages the common Component Object Programming practices. After

identifying the core structures, mechanisms and behaviors in a typical DGS, we devised the

abstract model of an expression evaluator, and a set of code annotations (metadata) to provide

concrete functionality. This OOP approach is very good accepted by students and pupils in our

experiments [8, 9].

Also, we want to introduce development by parts in DGS by allowing component develop-

ment, independent of the development of DGS itself. It is well known principle introduced with

enhancement of software and its development in teams in different development cycles. The

components are included in DGS in run-time and have the same treatment as first-class citizens

in DGS. The natural extension of this approach is to provide visual components that, beside the

program’s aspects (properties and behavior), also have a graphical representation.

In the following sections we present these approaches.

3. EXTENSIBILITY IN DYNAMIC GEOMETRY SOFTWARE

SLGeometry framework for dynamic geometry we have been developing for several years

consists of following components:

— Specification for Types, Functions and Visual elements,

— CAS Engine,

— Extensibility infrastructure,

— JIT compilation subsystem,

— Expression parser,

— Interactive components.

SLGeometry consists of a parser, an expression evaluator (Engine) and a graphical surface

(GeoCanvas) (Fig. 1). A set of expressions, stored in named variables, which represent the ele-

ments of a dynamic drawing are maintained the Engine. GeoCanvas displays geometric shapes

and UI controls, and responds to user interaction.

COMPUTER IN EDUCATION 75

Djordje Herceg , Davorka Radakovíc, Mirjana Ivanovíc, Dejana Herceg

Figure 1. SLGeometry system architecture overview

New types, functions and visual objects can be imported from DLL files into the Engine at

runtime. The DLL files can be implemented by independent developers in C# outside of the

regular implementation cycle of SLGeometry, by inheriting from a set of standard C# classes

and interfaces and following guidelines and recommendations.

Dynamic drawings are created by constructing expressions in a functional domain-specific

language (abbreviated: FLG) and assigning them to variables in the Engine. In that regard, the

set of variables can be considered equivalent to the drawing it represents. The set of types (T),

type conversions (C), operations (O), functions (F) and visuals (V) in the FLG is denoted with

τ= {T,C ,O,F,V }.

The Engine evaluates the expressions stored in variables. If the result of an evaluation corre-

sponds to a visual type registered with the GeoCanvas, the visual object, is created and shown on

the GeoCanvas. In this way, a one-to-one mapping is established between a variable and a visual

object. Expressions can reference other variables and in this way, dependencies are established

between variables. A change in one variable triggers recursive recalculation of all dependent

variables. The user can manipulate one visual object, and all dependent variables — and their

corresponding visual object—will be recalculated and their visuals updated on the GeoCanvas.

Usually for any software product is characteristic that it is getting mature during their use

and new features are adding to it to increase quality and functionality. A DGS can also be ex-

tended by adding new features. For example, extension can be achieved by adding new data

types (object types) and appropriate functions dealing with these new types, to its programming

language.

As a particular example, a Triangle object type can be added in SLGeometry, which repre-

sents a triangle defined by three points. A corresponding Triangle function can also be added,

which takes one of several sets of arguments and produces a Triangle object as a result. For

example, the following function can be considered (Fig. 2):

76 © COMPUTER TOOLS IN EDUCATION.№2, 2019

Possible Improvements of Modern Dynamic Geometry Software

Triangle (point1, point2, point3) defines a triangle via three corners,

Triangle (point1, side1, side2, side3) defines a triangle via three sides,

Triangle (point1, angle1, side1, side2) defines a triangle via two sides and the angle between them.

Figure 2. Three ways to define a triangle by the Triangle function

Software development is a complex process which includes teams of developers working

semi-independently to implement different parts (components) of the final product. A software

component should be a self-contained and self-described unit which is integrated into the main

software either at the development stage, or at runtime. In the latter case the components are

usually called plug-ins. We developed a metadata specification which is used to describe the

plug-ins and enable seamless integration of new content in SLGeometry. Thus, new functions

and data types are easily imported into SLGeometry by way of plug-ins. Our solution enables

independent development of new functionalities outside of the main development cycle, and

easy customization of SLGeometry for various subjects.

4. OBJECT DATA TYPES AND NOTATION

Geometric shapes are regarded by humans as objects with specific properties. We infer in-

formation about shapes by simply looking at them, or by performing some calculations. For

example, the triangles from Fig. 2 have three corners each; regardless of the way they were con-

structed. The corners of the first triangle are specified in its definition, while the corners of the

other two triangles are calculated from available data: lengths of sides and the angle between

sides.

Existing DGS have designated functions for obtaining data about properties of geometric

shapes. For example, in GeoGebra, one can use the Midpoint function (called "command"

in GeoGebra) to obtain the midpoint of a segment, and of several other object types. The

function-centric approach requires the user to apply the function on the object in order to

extract the property value, for example, Mi d poi nt (Seg ment ((1,1), (1,5))) or Mi d poi nt (s) if
s = Seg ment ((1,1), (1,5)).
This approach, although simple at first glance, has a serious disadvantage in a plugin-

enabled DGS. When a new object type is imported into DGS, it should be accompanied by a set

of functions related to property evaluation and extraction, which quickly leads to a cluttered

function set, with many similarly named functions, which have a very specific and narrow

application. Let us consider the Triangle object. It has dozens of properties, a subset of which

is shown in Table 1. By the function-centric principle, each of these properties should be

supported by a separate function.

The answer, to the issue of the function set overcrowding, is to introduce the full object

model into the DGS programming language. In SLGeometry, geometric shapes are objects with

their properties. Properties are accessed by using the dot notation, in the same manner as in

COMPUTER IN EDUCATION 77

Djordje Herceg , Davorka Radakovíc, Mirjana Ivanovíc, Dejana Herceg

Table 1. A subset of properties of the Triangle object type

Property Type

A, B, C Point

Area, Perimeter Number

SideA, SideB, SideC Segment

AngleA, AngleB, AngleC Angle

MedianA, MedianB, MedianC Segment

Centroid, Orthocenter Point

AltitudeA, AltitudeB, AltitudeC Segment

Incircle, Circumcircle Circle

object oriented languages, e.g. Java and C#. Thus, the example with the midpoint can be rewrit-

ten in a simpler and more natural way, as Seg ment ((1,1), (1,5)).Mi d poi nt or s.Mi d poi nt if
s = Seg ment ((1,1), (1,5)).
Dot notation brings the "object-dot-property" naming scheme into DGS. Considering that

properties of geometric shapes may be shapes themselves, this scheme becomes recursive. For

example, the length of a side of a triangle is accessed as Tr i ang le(a,b,c).Si de A.Leng th or
t .Si de A.Leng th if t = Tr i ang le(a,b,c) and a = (1,1),b = (1,5),c = (2,4).
As the properties of an object are kept within the object itself, it is possible to implement a

graphical user interface which enables the user to discover the objects’ properties interactively,

e.g. by right-clicking or touching it. By the same recursion as above, the user can ’drill down’ the

object hierarchy and discover objects within objects.

Figure 3. The Midpoint function in GeoGebra

78 © COMPUTER TOOLS IN EDUCATION.№2, 2019

Possible Improvements of Modern Dynamic Geometry Software

Table 2. Circumcircle in GeoGebra and SLGeometry

GUI Expression input Dynamic drawing

GeoGebra A = (0,3)

B = (0,0)

C = (4,0)

t1 = Pol y g on(A,B ,C)

a = Seg ment (B ,C , t1)

b = Seg ment (C , A, t1)

c = Seg ment (A,B , t1)

f = Per pendi cul ar Bi sector (a)

g = Per pendi cul ar Bi sector (c)

D = Inter sect (f , g)

d =Ci r cle(D,C)

SLGeometry A = (0,3)

B = (0,0)

C = (4,0)

T = Tr i ang le(A,B ,C)

K = T.Ci r cumci r cle

Let us observe a triangle defined by 3 points, A, B and C and compare theway its circumcircle

is drawn in GeoGebra and SLGeometry (Table 2). In GeoGebra, triangle is defined by way of the

Polygon function, and each individual segment is automatically assigned a variable. A center of

the circumcircle is defined as the intersection of the sides’ bisectors, which are obtained with

the PerpendicularBisector function. The intersection is calculated with the Intersect function.

Finally, the Circle function is used to draw the circumcircle.

In contrast, the Triangle shape in SLGeometry already has the Circumcircle property. The

triangle T is defined by 3 points A, B and C using the Triangle function. Now it suffices to ad-

dress the T.Circumcircle property and the circle appears in the drawing. This is obviously an

improvement, as Circumcircle needs not be implemented as a separate, stand-alone function in

SLGeometry. It is implemented under the Triangle object. The resulting syntax in SLGeometry is

thus simplified compared to the classical functional approach in other DGS.

COMPUTER IN EDUCATION 79

Djordje Herceg , Davorka Radakovíc, Mirjana Ivanovíc, Dejana Herceg

5. INTERACTIVE COMPONENTS

DGS are designed to operate primarily with numbers, geometric objects and mathematical

functions. Today, however, many teachers employ DGS to construct interactive examples for

subjects other than mathematics, such as physics, chemistry, biology, geography, engineering

and art. Creating dynamic drawings for such subjects can be a tedious undertaking. For exam-

ple, an interactive clock with moving hands can consist of as many as 30 separate geometric ob-

jects. The many objects that make up the clock are difficult to distinguish from the other objects,

drawing the pupils’ attention away from the main focus of the material. Making a simple copy

of the clock generates another 30 separate objects and adding to the clutter. Furthermore, it is

difficult to reuse the clock in another drawing. The same limitation also appears when creating

teaching materials for other subjects. For example, teachers often use DGS to show geographic

maps, consisting of tens and hundreds of points.

Our proposed solution is to introduce interactive components in SLGeometry. Each compo-

nent, no matter how complex, can be included into dynamic drawings as single object. Each

component must be developed in C# by a developer. All data needed for drawing countries are

added to Country function in advance.

For example, the geographic map component (Country function) displaying Italy is shown

in Table 3. The component takes the country name as a parameter and generates a list of points

comprising its outline.

Table 3. Italy shown by the Country component

italy = Country("Italy", 0)

italy.V i si bl e = false

pItaly = Polygon(Italy)

Components in SLGeometry are either functions or visual objects, which are added to the

existing functions and visual objects. When considering the use of components, one should have

in mind several important issues.

Without components
— One complex object is constructed from many geometric shapes,

— Many variables required to hold these shapes,

— No logical connection between the shapes,

— Construction can be completed in DGS alone,

— Duplicating the complex object requires duplication of all its constituent parts.

With components
— One complex object is represented by one component,

80 © COMPUTER TOOLS IN EDUCATION.№2, 2019

Possible Improvements of Modern Dynamic Geometry Software

— One variable is required to hold the component,

— One-to-one correspondence between the component and its real life counterpart,

— Component is developed by an experienced developer, outside the DGS,

— Duplicating the complex object creates only one additional. variable

As one can see, the existence of components in DGSs have many positive aspects. However,

there is also a drawback— each component must be developed in C# by a developer, outside of

SLGeometry. This means that the majority of ordinary users do not possess the necessary skills

for component development. On the other hand, given the proper instructions and adequate

guidelines, a reasonably skilled developer could make a number of components and make them

available for download, for example via a dedicated Web site or from within the DGS .

6. JUST IN TIME COMPILATION

From our teaching experience and our colleagues, we learned that the dynamic drawings,

created by teachers and students, are becoming more complex. This phenomenon stems from

DGS being applied to an ever growing range of teaching subjects, such as geography, physics,

electrical engineering, architecture and arts. Compared to geometric drawings, the drawings

for other subjects contain a substantially greater number of expressions and corresponding vi-

sual components and real-time recalculations of dynamic drawings is becoming CPU intensive.

Therefore it is logical to try to speed up calculation of expressions in DGS.

We are currently working in order to solve these problems. Our main intention is to work

on just in time (JIT) partial compilation of expressions in XXXXX. We have developed the neces-

sary infrastructure, which enables compilation to be implemented on any individual function.

The main idea behind partial compilation is to use the metadata and dynamic typing to iden-

tify parts of expressions trees which are compilable, and to transform those parts to compiled

code. Authors of different functions can decide whether they want to support compilation, by

implementing a Boolean flag. Therefore it is possible that some parts of expression trees are not

compilable . Other factors can also affect compilability. Therefore an expression tree may be

only partially compilable (Fig. 4).

Figure 4. A completely compilable tree vs. a partially compilable tree

There are several possible compilation approaches that have been considered—MSIL code,

Expression trees and delegates. It is up to the authors of functions to decidewhich approach they

want to use, based on possible performance gains and the overall difficulty of implementation.

In our preliminary testing, we have found that delegates may provide a good balance in that

regard. Each function passes the “initialization” phase during which it can decide, based on the

types of supplied arguments, which delegate to use for evaluation, assuming that the types of the

COMPUTER IN EDUCATION 81

Djordje Herceg , Davorka Radakovíc, Mirjana Ivanovíc, Dejana Herceg

arguments will not change between evaluations. This way, under repeated evaluation, the func-

tion can omit parameter type checking and branching, and proceed to evaluate the optimized

delegate, thus saving a considerable amount of time.

We have performed several tests on compiled code and found out that significant reduction

in calculation time is possible.

7. ARDUINO INTERFACE

We are considering a possibility for connecting Arduino to SLGeometry. Arduino [36] is a

family of microcontroller-based development boards and accompanying open source software

which are affordable, simple to program and easy to connect to a wide variety of electronic

components and peripherals such as sensors, radios, motors etc. Although intended for educa-

tion and hobby projects, Arduino is also used in commercial products. Arduino software consists

of a base platform with integrated development environment and an open-access library which

contains hardware drivers and software components. Arduino is programmed in C++.

An Arduino board has several input and output pins. Some pins are digital, while other are

analog. Digital pins only support logical values of true and false, represented by discrete voltage

levels of 5V and 0V. Analog pins can measure voltages in the continuous range from 0V to 5V.

Peripherals communicate with Arduino via interconnected pins, which can be read from and

written to in a C++ program.

There exist many educational examples, from digital clocks and thermometers to robots and

Internet of Things (IoT) applications. Currently we are working on an object model of the hard-

ware which would represent Arduino as a visual component in XXXXX, with inputs and outputs

that can be bound to arbitrary mathematical expressions. Our aim of connecting Arduino and

SLGeometry is twofold:

1. to obtain real-world data from Arduino and have it processed in real-time in SLGeometry,

and

2. to enable SLGeometry to control various devices on the Arduino.

The virtual Arduino component for SLGeometry will contain an array of input and output

pins, each mapped to a corresponding pin on Arduino. Changes on input pins will propagate

from Arduino hardware to SLGeometry, while changes in the virtual Arduino component will

propagate from SLGeometry to the hardware. Additional electronic components, connected to

Arduino, will also be mapped to corresponding sets of pins in the software component. A two-

way, real-time transfer of pin states will be established between the hardware and the software,

thus enabling the software to act upon multiple inputs generated from the hardware, and send

its outputs in the opposite directions.

A simple example demonstrates the benefits of this approach in education. Let us consider

a monitored capacitor charging circuit (Fig. 5). As the capacitor charges, the voltage across its

terminals rises, quickly in the beginning and more slowly as it approaches full capacity. One

method to determine the stopping criterion for charging is to observe the slope of the volt-

age curve. Charging stops when the slope becomes almost horizontal, i.e. falls below a certain

threshold.

To determine the slope of the experimental curve, one can employ numerical differentia-

tion. On the other hand, school pupils may use geometric methods: for example, construct a line

through the last two measured points and compare its slope to the threshold. In this example,

measured data is obtained from the Arduino, and automatically transferred to the virtual Ar-

duino component in SLGeometry. From there, a simple expression extracts the last two points

82 © COMPUTER TOOLS IN EDUCATION.№2, 2019

Possible Improvements of Modern Dynamic Geometry Software

Figure 5. Capacitor charging experiment with Arduino

and constructs a straight line through them. A Line object is created as a result, which has the

Slope property. Thus, an interactive example is created, which does not require any advanced

knowledge of numerical mathematics or geometry, yet illustrates the solution in an obvious way.

We hope that results of such our efforts will find its positive place and be motivational for

pupils and teachers in primary and secondary education, especially applied to subjects such as

physics and electronics.

8. CONCLUSIONS

As teachers and student become more proficient in the use of DGS, they are trying to apply

them in various subjects, not just mathematics and geometry. Although their interactive nature

makes them attractive to use in teaching and teaching materials creation, some drawbacks stem

from their essentially geometric nature. We have tried to develop new features and have them

built into SLGeometry in order to test new approaches to using DGS in teaching.

Extensibility is a key feature of any DGS that aims to cover the ever growing spectrum of ap-

plications in education. Our solution to extensibility provides the users with new functionality,

suitable for their needs, and developers with a simple framework and guidelines for develop-

ment of new data types and functions. Full object model, named properties and dot notation

are a commonplace in modern programming languages. Bringing those features into DGS helps

reduce the clutter in the function pool, which occurs as a consequence of constantly increas-

ing number of functions and shapes that modern DGS support. It also helps bring the objects

and their properties together, and also enables interactive discovery of properties of geometric

shapes. Just in time compilation and Arduino interface are two features that are currently un-

der development. Our aim is to explore the ways to make a DGS more CPU efficient. Also, we are

looking for the best way to collect, process and explore real-time data from microcontrollers in

a DGS.

COMPUTER IN EDUCATION 83

Djordje Herceg , Davorka Radakovíc, Mirjana Ivanovíc, Dejana Herceg

References

1. GeoGebra. [Online], Available: https://www.geogebra.org/

2. Cabri. [Online], Available: http://cabri.com/en/

3. The Interactive Geometry Software Cinderella. [Online], Available: https://cinderella.de/tikiindex.php

4. The Geometer's Sketchpad. [Online], Available: http://www.keycurriculum.com/sketchpad.1.html

5. Wolfram Mathematica [Online], Available: https://www.wolfram.com/mathematica/

6. D. Radaković and D. Herceg, “Towards a Completely Extensible Dynamic Geometry Soft-

ware with Metadata, Computer Languages,” Systems & Structures, vol. 52, pp. 1-–20, 2018;
doi: 10.1016/j.cl.2017.11.001

7. D. Herceg and D. Radaković, “The Extensibility of an Interpreted Language Using Plugin Libraries,”

In AIP Proc. Numerical Analysis and AppliedMathematics ICNAAM 2011, vol. 1389, pp. 837-–840, 2011;
doi: 10.1063/1.3636863

8. D. Herceg and D. Radaković, “A Platform for Development of Mathematical games on Silverlight,”Acta Didactica Na pocensia, vol. 6, no. 1, pp. 77—90, 2013. [Online], Available: https://files.eric.ed.gov/
fulltext/EJ1053670.pdf

9. D. Herceg, V. Herceg-Mandić, and D. Radaković, “The Teaching of Geography Using Dynamic Geome-

try Software,” In Local Proceedings of the Fifth Balkan Conference in Informatics, BCI 2012, Novi Sad,
pp. 11-–15, 2012.

10. M. Niss, EMS Newsletter December 2012, pp. 49-–52, 2012. [Online], Available: http://www.

euro-math-soc.eu/ems_education/Solid_Findings_Modelling.pdf

11. M. M. Underkoffler, PhD thesis, Digital Repository @ Iowa State University, 1969; doi: 10.31274/rtd-
180813-1201

12. W. Blum and M. Niss, Educ. Stud. Math., Kluwer Academic Publishers, Dordrecht 22, pp. 37–68, 1991.
13. W. Blum and R. Borromeo-Ferri, “Mathematical Modelling: Can It Be Taught And Learnt?” J. Math.Model. Appl., vol. 1, no. 1, pp. 45–58, 2009.
14. H. Kaufmann and D. Schmalstieg, ACM SIGGRAPH 2002 Conference Abstracts and Applications, San

Antonio, Texas: ACM, pp. 37–41, 2002; doi: 10.1145/1242073.1242086

15. P. Drijvers, L. Ball, B. Barzel, M. K. Heid, Y. Cao, and M. Maschietto, Uses of Technology in LowerSecondary Mathematics Education, Springer International Publishing, 2016; doi: 10.1007/978-3-319-
33666-4

16. H. Burkhardt, Towards Research-based Education, Shell Centre for Mathematical Education Publi-
cations Ltd., pp. 1–25, 2018. [Online], Available: https://www.mathshell.com/papers/pdf/hb_2018_

research_based_education.pdf

17. H. B. Gonzalez and J. J. Kuenzi, Science, Technology, Engineering, and Mathematics (STEM) Education:A Primer, 2012. [Online], Available: https://fas.org/sgp/crs/misc/R42642.pdf
18. N. DeJarnette, "America’s children: providing early exposure to stem (science, technology, engineer-

ing and math) Initiatives," Educ., vol. 133, no. 1, pp. 77–84, 2012.
19. Z. Lavicza, K. Fenyvesi, D. Lieban, H. Park, M. Hohenwarter, J. Mantecon, and T. Prodromou, “Math-

ematics Learning Through Arts, Technology and Robotics: Multi-and Transdiscpilinary Steam Ap-

proaches,” 8th ICMI-East Asia Regional Conference on Mathematics Education, Taipei, Taiwan, 2018,
pp. 110–122.

20. B. R. Mainali and M. B. Key, “Using dynamic geometry software GeoGebra in developing countries:

A case study of impressions of mathematics teachers in Nepal,” Int. J. Math. Teaching Learn., pp. 1–16,
2012. [Online], Available: http://www.cimt.org.uk/journal/mainali.pdf

21. K. K. Bhagat and C. Chang, “Incorporating GeoGebra into Geometry Learning-A lesson from India,”Eurasia J. Math., Sci. Technol. Educ., vol. 11, no. 1, pp. 77–86, 2015; doi: 10.12973/eurasia.2015.1307a
22. M. Khalil, R. A. Farooq, E. Cakiroˇglu, U. Khalil, and D. M. Khan, “Mathematical Achievement in An-

alytic Geometry of Grade-12 Students through GeoGebra Activities,” J. Eurasia Math. Sci. Technol.Educ., vol. 14, no. 4, 1453–63, 2018; doi: 10.29333/ejmste/83681
23. O. B. Han, N. D. B. Abd Halim, R. S. B. Shariffuddin, and Z. B. Abdullah, “Computer Based Courseware

in Learning Mathematics: Potentials and Constrains,” Procedia Soc. and Behav. Sci., vol. 103, pp. 238–
244, 2013; doi: 10.1016/j.sbspro.2013.10.331

24. J. Jezdimirović, "Computer Based Support for Mathematics Education in Serbia." Int. J. Tech. InclusiveEduc. (IJTIE), vol. 3, no. 1, pp. 277–285, 2014; doi: 10.20533/ijtie.2047.0533.2014.0036
25. E. Ljajko, V. Ibro, “The Development of Development of ideas in a GeoGebra — aided mathematics

84 © COMPUTER TOOLS IN EDUCATION.№2, 2019

https://www.geogebra.org/
http://cabri.com/en/
https://cinderella.de/tikiindex.php
http://www.keycurriculum.com/sketchpad.1.html
https://www.wolfram.com/mathematica/
https://files.eric.ed.gov/fulltext/EJ1053670.pdf
https://files.eric.ed.gov/fulltext/EJ1053670.pdf
http ://www.euro-math-soc.eu/ems_education/Solid_Findings_Modelling.pdf
http ://www.euro-math-soc.eu/ems_education/Solid_Findings_Modelling.pdf
https://www.mathshell.com/papers/pdf/hb_2018_research_based_education.pdf
https://www.mathshell.com/papers/pdf/hb_2018_research_based_education.pdf
https://fas.org/sgp/crs/misc/R42642.pdf
http://www.cimt.org.uk/journal/mainali.pdf

Possible Improvements of Modern Dynamic Geometry Software

instruction,”Mevlana Int. J. Educ. (MIJE), vol. 3, no. 3, pp. 1–7, 2013; doi: 10.13054/mije.si.2013.01
26. Lj. Diković, “Applications GeoGebra into teaching some topics of mathematics at the college level,”Comp. Sci. Inf. Sys., vol. 6, no. 2, pp. 191–203, 2009; doi: 10.2298/csis0902191D
27. H. Burkhardt, “Curriculum Design and Systemic Change,” Math. curriculum sch. educ., pp. 13–34,

2013; doi: 10.1007/978-94-007-7560-2_2

28. J. Sarama and D. H. Clements, Studies in Mathematical Thinking and Learning Series, Taylor and Fran-
cis, 2009. [Online], Available: https://books.google.rs/books?id=Z5KOAgAAQBAJ

29. J. Sarama and D. H. Clements, "“Concrete” Computer Manipulatives in Mathematics Education," ChildDevelopment Perspectives vol. 3, no. 3, pp. 145–150, 2012; doi: 10.1111/j.1750-8606.2009.00095.x
30. A. H. Schoenfeld, “What Makes for Powerful Classrooms, and How Can We Support Teachers in Cre-

ating Them? A Story of Research and Practice, Productively Intertwined,” Educ. Researcher, vol. 43,
no. 8, pp. 404–412, 2014; doi: 10.3102/0013189X14554450

31. R. M. Zbiek and A. Conner, “Beyond Motivation: Exploring Mathematical Modeling as A Context for

Deepening Students’ Understandings of Curricular Mathematics,” Educ. Stud. Math., vol. 63, no. 1,
pp. 89–112, 2006; doi: 10.1007/s10649-005-9002-4

32. M. Aktümen, T. Horzum, and T. Ceylan, "Modeling and Visualization Process of the Curve of Pen

Point by GeoGebra," European Journal of Contemporary Educatio, vol. 4, no. 2, pp. 88–99, 2013;
doi: 10.13187/ejced.2013.4.88

33. C. Laborde and B. Capponi, “Cabri-géomètre constituant d’unmilieu pour l’apprentissage de la notion

de Figure géométrique. Recherches en Didactique des Mathématiques,” Recherches en didactique desmathématiques, vol. 14, no. 1.2, pp. 165–210, 1994.
34. N. Jackiw and W. Finzer, The Geometer’s Sketchpad: Programming by Geometry, A. Cypher et al, Eds.,

MIT Press, Cambridge, MA, 1993, pp. 293–308.

35. GeoGebra Materials. [Online], Available: https://www.geogebra.org/materials/

36. Arduino. [Online], Available: https://www.arduino.cc/

Received 15.05.2019, the final version— 20.06.2019.

Компьютерные инструменты в образовании, 2019

№ 2: 72–86

УДК: 621.320

http://cte.eltech.ru

doi:10.32603/2071-2340-2019-2-72-86

Возможные усовершенствования современного программного

обеспечения динамической геометрии

Херцег Д.
1
, профессор, herceg@dmi.uns.ac.rs

Радакович Д.
1
, магистр, ассистент, davorkar@dmi.uns.ac.rs

Иванович М.
1
, профессор, mira@dmi.uns.ac.rs

Херцег Д.
1
, доцент, vuletic@uns.ac.rs

1
Университет Нови-Сад, Нови-Сад, Сербия

Аннотация

Современное образование начинает вытеснять традиционное (уроки от учителя

к ученику) высокотехнологичным обучением с использованием различных обра-

зовательных инструментов и подбором материалов, которые являются эффектив-

ными, действенными и привлекательными для учащихся. Программное обеспече-

COMPUTER IN EDUCATION 85

https://books.google.rs/books?id=Z5KOAgAAQBAJ
https://www.geogebra.org/materials/
https://www.arduino.cc/
http://cte.eltech.ru
http://dx.doi.org/10.32603/2071-2340-2019-2-72-86
mailto:herceg@dmi.uns.ac.rs
mailto:davorkar@dmi.uns.ac.rs
mailto:mira@dmi.uns.ac.rs
mailto:vuletic@uns.ac.rs

Djordje Herceg , Davorka Radakovíc, Mirjana Ivanovíc, Dejana Herceg

ние динамической геометрии (DGS) сегодня широко используется в преподавании

и изучении математики. Такое образовательное программное обеспечение может

развиваться несколькими способами, либо надстраивая новые функции, либо до-

бавляя новые функции на поверхности, либо развивая механизм оценки в его ядре.

Реализация DGS должна быть простой и модульной.

Чтобы добиться развития ядра DGS мы разработали среду программирования для

программного обеспечения динамической геометрии SLGeometry с обобщенным

функциональным языком и соответствующим механизмом оценки выражений.

Механизм действует как фреймворк, в который встроена конкретная семантика в

виде кода, аннотированного метаданными. Этот фреймворк преобразует обычный

вычислитель дерева выражений в объектно-ориентированный. В то время как дру-

гие DG основаны на чисто функциональных оценщиках выражений, наше решение

обладает преимуществами более общего, поддерживаемого, понятного, простого

в реализации и обеспечивающего естественный способ задания свойств объекта

в пользовательском интерфейсе, минимизируя типизацию и синтаксические

ошибки. Модульный подход позволяет самостоятельно разрабатывать предметно-

ориентированные компоненты, которые легко добавляются в механизм оценки

в виде плагинов. Объектно-ориентированный характер фреймворка позволяет

разрабатывать автономные единицы, такие как объекты и визуальные элементы,

которые инкапсулируют предметную семантику и представляют ее пользователю в

виде виртуальных заполнителей для реальных объектов и понятий.

В этой статье мы представляем несколько возможных улучшений программного

обеспечения динамической геометрии, в первую очередь на платформе, которую

мы внедрили. Кроме того, мы обсуждаем преимущества этих функций и их влияние

на пользователей/студентов. Подход тестируется на SLGeometry— нашей платфор-

ме DGS, разработанной в C# на платформе .NET Framework.

Ключевые слова: программное обеспечение для динамической геометрии, обуче-

ние, разработка компонентов.

Цитирование: Херцег Д., Радакович Д., Иванович М., Херцег Д. Возможные

усовершенствования современного программного обеспечения динамической

геометрии // Компьютерные инструменты в образовании, 2019. № 2. С. 72–86. doi:

10.32603/2071-2340-2019-2-72-86

Поступила в редакцию 15.05.2019, окончательный вариант— 20.06.2019.

86 © COMPUTER TOOLS IN EDUCATION.№2, 2019

	INTRODUCTION
	RELATED WORK
	EXTENSIBILITY IN DYNAMIC GEOMETRY SOFTWARE
	OBJECT DATA TYPES AND NOTATION
	INTERACTIVE COMPONENTS
	JUST IN TIME COMPILATION
	ARDUINO INTERFACE
	CONCLUSIONS

